Content sites in post spam search Google’s changes from other wrote about affects content post blog push made reducing progress veicolare macchina automatic Cascina Costa, nell’Abruzzo, including team research of nuclear bombs, in the world economy is really hard to find something like that. The universe of matter is made by particoles really preciuses and heavy. Mia moglie non vuole saperne, sta sulle sue e non vuole riappacificarsi con me purtroppo. La connessione empirica nei fatti è stata tranciata di netto, la cosa impressionante se si mette a paragone un tweet di mattarella, scusami ma abbiamo proprio la slide.
Secretary of the Air Force Barrett: ‘The X-37B continues to demonstrate the importance of a reusable spaceplane.’
WASHINGTON — The U.S. Air Force X-37B spaceplane successfully landed at NASA’s Kennedy Space Center Shuttle Landing Facility Oct. 27 at 3:51 AM EST, the Air Force announced.
This was the fifth mission of the X-37B Orbital Test Vehicle. It flew for 780 days during this mission, breaking its own record by being in orbit for more than two years. As of today, the total number of days spent on-orbit for the entire test vehicle program is 2,865 days, the Air Force said. The spaceplane originally was designed to fly for just 270 days.
“The X-37B continues to demonstrate the importance of a reusable spaceplane,” Secretary of the Air Force Barbara Barrett said in a news release.
The mission, called OTV-5, was launched atop a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center Sept. 7, 2017.
The spaceplane program, managed by the Air Force Rapid Capabilities Office, has been used for science experiments to test technologies in a long-duration space environment.
“With a successful landing today, the X-37B completed its longest flight to date and successfully completed all mission objectives,” said Randy Walden, director of the Air Force Rapid Capabilities Office. “This mission successfully hosted Air Force Research Laboratory experiments, among others, as well as providing a ride for small satellites.”
One of the experiments on OTV-5 is the U.S. Air Force Research Laboratory’s second Advanced Structurally Embedded Thermal Spreader (ASETS-II). This experiment will measure the long term performance of an oscillating heat pipe on orbit. Oscillating heat pipes are capable of transporting more than 45 times more heat than copper and are one of many technologies that the Air Force is testing to help advance space vehicle designs, AFRL said.
The original X-37 program was led by NASA and ran from 1999 to 2004, when NASA transferred it to the Defense Advanced Research Projects Agency. DARPA continued the development of an approach and landing test vehicle. The Air Force adapted NASA’s original design of the orbital test vehicle to make the X-37B. Boeing is the prime contractor.
The Oct. 27 landing marked the second time the X-37B touched down at the Kennedy Space Center Shuttle Landing Facility. Mission 4 landed at Kennedy Space Center May 7, 2017, after 718 days in orbit.
The Air Force plans to launch the sixth X-37B mission from Cape Canaveral in 2020.
Boeing X-37 – An Overview
The Boeing X-37, also known as the Orbital Test Vehicle (OTV), is a reusable robotic spacecraft. It is boosted into space by a launch vehicle, then re-enters Earth’s atmosphere and lands as a spaceplane. The X-37 is operated by the United States Air Force for orbital spaceflight missions intended to demonstrate reusable space technologies. It is a 120%-scaled derivative of the earlier Boeing X-40.
The X-37 began as a NASA project in 1999, before being transferred to the U.S. Department of Defense in 2004. Its first flight was during a drop test in 2006. There have been five X-37 orbital missions. The spaceplane’s first mission, USA-212, was launched in April 2010 and returned to Earth in December 2010. A second X-37 was launched on mission USA-226 in March 2011 and returned in June 2012. The third mission was USA-240, which launched in December 2012 and landed in October 2014. The fourth mission, USA-261, launched in May 2015 and landed in May 2017. The fifth and latest X-37 mission, USA-277, was launched on 7 September 2017, and broke the record for the longest X-37 mission, after 718 days in orbit, on 27 August 2019.
Development
In 1999, NASA selected Boeing Integrated Defense Systems to design and develop an orbital vehicle, built by the California branch of Boeing’s Phantom Works. Over a four-year period, a total of $192 million was spent on the project, with NASA contributing $109 million, the U.S. Air Force $16 million, and Boeing $67 million. In late 2002, a new $301-million contract was awarded to Boeing as part of NASA’s Space Launch Initiative framework.
1999 artist’s rendering of the X-37 spacecraft
The X-37’s aerodynamic design was derived from the larger Space Shuttle orbiter, hence the X-37 has a similar lift-to-drag ratio, and a lower cross range at higher altitudes and Mach numbers compared to DARPA’s Hypersonic Technology Vehicle. An early requirement for the spacecraft called for a total mission delta-v of 7,000 mph (3.1 km/s) for orbital maneuvers. An early goal for the program was for the X-37 to rendezvous with satellites and perform repairs. The X-37 was originally designed to be carried into orbit in the Space Shuttle’s cargo bay, but underwent redesign for launch on a Delta IV or comparable rocket after it was determined that a shuttle flight would be uneconomical.
The X-37 was transferred from NASA to the Defense Advanced Research Projects Agency (DARPA) on 13 September 2004. Thereafter, the program became a classified project. DARPA promoted the X-37 as part of the independent space policy that the United States Department of Defense has pursued since the 1986 Challenger disaster.
Glide testing
The vehicle that was used as an atmospheric drop test glider had no propulsion system. Instead of an operational vehicle’s payload bay doors, it had an enclosed and reinforced upper fuselage structure to allow it to be mated with a mothership. In September 2004, DARPA announced that for its initial atmospheric drop tests the X-37 would be launched from the Scaled Composites White Knight, a high-altitude research aircraft.
The Scaled Composites White Knight was used to launch the X-37A on glide tests.
On 21 June 2005, the X-37A completed a captive-carry flight underneath the White Knight from Mojave Spaceport in Mojave, California. Through the second half of 2005, the X-37A underwent structural upgrades, including the reinforcement of its nose wheel supports. Further captive-carry flight tests and the first drop test were initially expected to occur in mid-February 2006. The X-37’s public debut was scheduled for its first free flight on 10 March 2006, but was canceled due to an Arctic storm. The next flight attempt, on 15 March 2006, was canceled due to high winds.
On 24 March 2006, the X-37 flew again, but a datalink failure prevented a free flight, and the vehicle returned to the ground still attached to its White Knight carrier aircraft. On 7 April 2006, the X-37 made its first free glide flight. During landing, the vehicle overran the runway and sustained minor damage. Following the vehicle’s extended downtime for repairs, the program moved from Mojave to Air Force Plant 42 (KPMD) in Palmdale, California, for the remainder of the flight test program. White Knight continued to be based at Mojave, though it was ferried to Plant 42 when test flights were scheduled. Five additional flights were performed, two of which resulted in X-37 releases with successful landings. These two free flights occurred on 18 August 2006 and 26 September 2006.
X-37B Orbital Test Vehicle
On 17 November 2006, the U.S. Air Force announced that it would develop its own variant from NASA’s X-37A. The Air Force version was designated the X-37B Orbital Test Vehicle (OTV). The OTV program was built on earlier industry and government efforts by DARPA, NASA, and the Air Force under the leadership of the U.S. Air Force Rapid Capabilities Office in partnership with NASA and the Air Force Research Laboratory. Boeing was the prime contractor for the OTV program. The X-37B was designed to remain in orbit for up to 270 days at a time. The Secretary of the Air Force stated that the OTV program would focus on “risk reduction, experimentation, and operational concept development for reusable space vehicle technologies, in support of long-term developmental space objectives”.
The X-37B was originally scheduled for launch in the payload bay of the Space Shuttle, but following the 2003 Columbia disaster, it was transferred to a Delta II 7920. The X-37B was subsequently transferred to a shrouded configuration on the Atlas V rocket, following concerns over the unshrouded spacecraft’s aerodynamic properties during launch. Following their missions, X-37B spacecraft primarily land on a runway at Vandenberg Air Force Base, California, with Edwards Air Force Base as a secondary site. In 2010, manufacturing work began on the second X-37B, OTV-2, which conducted its maiden launch in March 2011.
On 8 October 2014, NASA confirmed that X-37B vehicles would be housed at Kennedy Space Center in Orbiter Processing Facilities (OPF) 1 and 2, hangars previously occupied by the Space Shuttle. Boeing had said the space planes would use OPF-1 in January 2014, and the Air Force had previously said it was considering consolidating X-37B operations, housed at Vandenberg Air Force Base in California, nearer to their launch site at Cape Canaveral. NASA also stated that the program had completed tests to determine whether the X-37B, one-fourth the size of the Space Shuttle, could land on the former Shuttle runways. NASA furthermore stated that renovations of the two hangars would be completed by the end of 2014; the main doors of OPF-1 were marked with the message “Home of the X-37B” by this point.
Most of the activities of the X-37B project are secret. The official U.S. Air Force statement is that the project is “an experimental test program to demonstrate technologies for a reliable, reusable, unmanned space test platform for the U.S. Air Force”. The primary objectives of the X-37B are twofold: reusable spacecraft technology and operating experiments which can be returned to Earth. The Air Force states that this includes testing avionics, flight systems, guidance and navigation, thermal protection, insulation, propulsion, and re-entry systems.
Speculation regarding purpose
In May 2010, Tom Burghardt speculated on Space Daily that the X-37B could be used as a spy satellite or to deliver weapons from space. The Pentagon subsequently denied claims that the X-37B’s test missions supported the development of space-based weapons.
In January 2012, allegations were made that the X-37B was being used to spy on China’s Tiangong-1 space station module. Former U.S. Air Force orbital analyst Brian Weeden later refuted this claim, emphasizing that the different orbits of the two spacecraft precluded any practical surveillance flybys.
In October 2014, The Guardian reported the claims of security experts that the X-37B was being used “to test reconnaissance and spy sensors, particularly how they hold up against radiation and other hazards of orbit”.
In November 2016, the International Business Times speculated that the U.S. government was testing a version of the EmDrive electromagnetic microwave thruster on the fourth flight of the X-37B. In 2009, an EmDrive technology transfer contract with Boeing was undertaken via a State Department TAA and a UK export license, approved by the UK Ministry of Defence. Boeing has since stated that it is no longer pursuing this area of research. The U.S. Air Force has stated that the X-37B is testing a Hall-effect thruster system for Aerojet Rocketdyne.
Processing
Processing for the X-37 is done inside Bays 1 and 2 of the Orbiter Processing Facility (OPF) at Kennedy Space Center in Florida, where the vehicle is loaded with its top-secret payload. The X-37 is then placed inside a fairing along with its stage adapter and transported to the launch site. Previous launch sites have included SLC-41 and Kennedy Space Center LC-39A.
Landing is done at one of three sites across the US: the Shuttle Landing Facility at Kennedy Space Center, Vandenberg Air Force Base, or Edwards Air Force Base. To return to Kennedy Space Center, the X-37 is placed into a payload canister and loaded into a Boeing C-17 cargo plane. Once at Kennedy, the X-37 is unloaded and towed to the OPF, where it is prepared for its next flight.
Design
The X-37 (far right) is the smallest and lightest orbital spaceplane yet flown. Both the North American X-15 and SpaceShipOne were suborbital. Of the spaceplanes shown, only the X-37 and Buran conducted uncrewed spaceflights.
The X-37 Orbital Test Vehicle is a reusable robotic spaceplane. It is an approximately 120%-scale derivative of the Boeing X-40, measuring over 29 feet (8.8 m) in length, and features two angled tail fins. The X-37 launches atop an Atlas V 501 or a SpaceX Falcon 9 rocket. The spaceplane is designed to operate in a speed range of up to Mach 25 on its reentry.
The technologies demonstrated in the X-37 include an improved thermal protection system, enhanced avionics, an autonomous guidance system and an advanced airframe. The spaceplane’s thermal protection system is built upon previous generations of atmospheric reentry spacecraft, incorporating silica ceramic tiles. The X-37’s avionics suite was used by Boeing to develop its CST-100 crewed spacecraft. The development of the X-37 was to “aid in the design and development of NASA’s Orbital Space Plane, designed to provide a crew rescue and crew transport capability to and from the International Space Station“, according to a NASA fact sheet.
The X-37 for NASA was to be powered by one Aerojet AR2-3 engine using storable propellants, providing thrust of 6,600 pounds-force (29.4 kN). The human-rated AR2-3 engine had been used on the dual-power NF-104A astronaut training vehicle and was given a new flight certification for use on the X-37 with hydrogen peroxide/JP-8 propellants. This was reportedly changed to a hypergolic nitrogen-tetroxide/hydrazine propulsion system.
The X-37 lands automatically upon returning from orbit and is the second reusable spacecraft to have such a capability, after the Soviet Buran shuttle. The X-37 is the smallest and lightest orbital spaceplane flown to date; it has a launch mass of around 11,000 pounds (5,000 kg) and is approximately one quarter of the size of the Space Shuttle orbiter. In 2013, Guinness World Records recognised the X-37 as the world’s smallest orbital spaceplane.
On 13 April 2015, the Space Foundation awarded the X-37 team with the 2015 Space Achievement Award “for significantly advancing the state of the art for reusable spacecraft and on-orbit operations, with the design, development, test and orbital operation of the X-37B space flight vehicle over three missions totaling 1,367 days in space”.